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Approximation by Superpositions of a Sigmoidal Function* 

G. C y b e n k o t  

Abstr,,ct. In this paper we demonstrate that finite linear combinations of com- 
positions of a fixed, univariate function and a set ofaffine functionals can uniformly 
approximate any continuous function of n real variables with support in the unit 
hypercube; only mild conditions are imposed on the univariate function. Our 
results settle an open question about representability in the class of single bidden 
layer neural networks. In particular, we show that arbitrary decision regions can 
be arbitrarily well approximated by continuous feedforward neural networks with 
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The 
paper discusses approximation properties of other possible types of nonlinearities 
that might be implemented by artificial neural networks. 
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1. Introduction 

A number  of diverse app l i ca t i on  areas  are  concerned with the represen ta t ion  of  
general  funct ions of  an n-d imens iona l  real variable,  x �9 R", by finite l inear  combina -  
t ions of  the form 

N 
+ or), (1) 

j=l 

where yj  �9 R" and ctj, 0 �9 I~ are  fixed. (yr  is the t ranspose  o f y  so that  yrx is the inner  
p roduc t  of  y and  x.) Here  the univar ia te  funct ion tr depends  heavi ly  on the contex t  
of the appl ica t ion .  O u r  m a j o r  concern  is with so-called s igmoida l  a ' s :  

a(t)__,fl as t - - ,  + ~ ,  
as t --* - ~ .  

Such.funct ions  arise na tu ra l ly  in neural  ne twork  theory as the ac t iva t ion  funct ion 
of  a neural  node  (or unit as is becoming  the preferred term) I L l ] ,  I R H M ] .  The  ma in  
result  of  this paper  is a d e m o n s t r a t i o n  of  the  fact that  sums of  the form (1) are  dense 
in the space of  con t inuous  funct ions  on the unit  cube iftr is any  con t inuous  s igmoida l  
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function. This case is discussed in the most detail, but we state general conditions 
on other possible a's that guarantee similar results. 

The possible use of artificial neural networks in signal processing and control 
applications has generated considerable attention recently [B], I'G]. Loosely speak- 
ing, an artificial neural network is formed from compositions and superpositions 
of a single, simple nonlinear activation or response function. Accordingly, the 
output of the network is the value of the function that results from that particular 
composition and superposition of the nonlinearities. In particular, the simplest 
nontrivial class of networks are those with one internal layer and they implement 
the class of functions given by (1). In applications such as pattern classification [L 1 ] 
and nonlinear prediction of time series iLF], for example, the goal is to select the 
compositions and superpositions appropriately so that desired network responses 
(meant to implement a classifying function or nonlinear predictor, respectively) are 
achieved. 

This leads to the problem of identifying the classes of functions that can be 
effectively realized by artificial neural networks. Similar problems are quite familiar 
and well studied in circuit theory and filter design where simple nonlinear devices 
are used to synthesize or approximate desired transfer functions. Thus, for example, 
a fundamental result in digital signal processing is the fact that digital filters made 
from unit delays and constant multipliers can approximate any continuous transfer 
function arbitrarily well. In this sense, the main result of this paper demonstrates 
that networks with only one internal layer and an arbitrary continuous sigmoidal 
nonlinearity enjoy the same kind of universality. 

Requiring that finite linear combinations such as (1) exactly represent a given 
continuous function is asking for too much. In a well-known resolution of Hilbert's 
13th problem, Kolmogorov showed that all continuous functions ofn variables have 
an exact representation in terms of finite superpositions and compositions of a small 
number of functions of one variable [K-I, [L2]. However, the Kolmogorov represen- 
tation involves different nonlinear functions. The issue of exact representability has 
been further explored in [DS] in the context of projection pursuit methods for 
statistical data analysis IH]. 

Our interest is in finite linear combinations involving the s a m e  univariate func- 
tion. Moreover, we settle for approximations as opposed to exact representations. 
It is easy to see that in this light, (I) merely generalizes approximations by finite 
Fourier series. The mathematical tools for demonstrating such completeness prop- 
erties typically fall into two categories: those that involve algebras of functions 
(leading to Stone-Weierstrass arguments l-A]) and those that involve translation 
invariant subspaces (leading to Tauberian theorems [R2]). We give examples of 
each of these cases in this paper. 

Our main result settles a long-standing question about the exact class of decision 
regions that continuous valued, single hidden layer neural networks can implement. 
Some recent discussions of this question are in [HL1], [HL2], [MSJ], and [WL] 
while IN] contains one of the early rigorous analyses. In IN] Nilsson showed that 
any set of M points can be partitioned into two arbitrary subsets by a network with 
one internal layer. There has been growing evidence through examples and special 
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cases that such networks can implement more general decision regions but a general 
theory has been missing. In [MS J-] Makhoul et al. have made a detailed geometric 
analysis of some of the decisions regions that can be constructed exactly with a 
single layer. By contrast, our work here shows that any collection of compact, 
disjoint subsets of R n can be discriminated with arbitrary precision. That  result is 
contained in Theorem 3 and the subsequent discussion below. 

A number of other current works are devoted to the same kinds of questions 
addressed in this paper. In [HSW] Hornik et al. show that monotonic sigmoidal 
functions in networks with single layers are complete in the space of continuous 
functions. Carroll and Dickinson [CD] show that the completeness property can 
be demonstrated constructively by using Radon transform ideas. Jones [J] out- 
lines a simple constructive demonstration of completeness for arbitrary bounded 
sigmoidal functions. Funahashi [F] has given a demonstration involving Fourier 
analysis and Paley-Wiener theory. In earlier work [C], we gave a constructive 
mathematical proof of the fact that continuous neural networks with two hidden 
layers can approximate arbitrary continuous functions. 

The main techniques that we use are drawn from standard functional analysis. 
The proof of the main theorem goes as follows. We start by noting that finite 
summations of the form (1) determine a subspace in the space of all continuous 
functions on the unit hypercube of R n. Using the Hahn-Banach and Riesz Represen- 
tation Theorems, we show that the subspace is annihilated by a finite measure. The 
measure must also annihilate every term in (1) and this leads to the necessary 
conditions on ~r. All the basic functional analysis that we use can be found in [A], 
[R2-1 for example. 

The organization of this paper is as follows. In Section 2 we deal with prelimi- 
naries, state, and prove the major result of the paper. Most of the technical details 
of this paper are in Section 2. In Section 3 we specialize to the case of interest in 
neural network theory and develop the consequences. Section 4 is a discussion of 
other types of functions, tr, that lead to similar results while Section 5 is a discussion 
and summary. 

2. Main Results 

Let In denote the n-dimensional unit cube, [0, 1] n. The space of continuous functions 
on In is denoted by C(ln) and we use Ilfll to  denote the supremum (or uniform) 
norm of an f ~ C(ln). In general we use I1"11 to  denote the maximum of a function 
on its domain. The space of finite, signed regular Borel measures on In is denoted 
by M(ln). See JR2] for a presentation of these and other functional analysis construc- 
tions that we use. 

The main goal of this paper is to investigate conditions under which sums of the 
form 

N 

G(x) = ~ ct~a(yTx + 0 r) 
j = l  

are dense in C(ln) with respect to the supremum norm. 
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Definition. We say that tr is discriminatory if for a measure/z ~ M(I.) 

t. a(ylrx + 0) dl~(x) = 0 

for all y e R" and 0 e R implies that/z = O. 

D e f i n i t i o n .  We say that a is sigmoidal if 

a ( t ) ~ f l  as t--* +oo, 

to a s  t ~ - o o .  

Theorem 1. Let a be any continuous discriminatory function. Then finite sums of  
the form 

N 

G(x) = ~ ~ja(y~x + Oj) (2) 
j= l  

are dense in C(I,). In other words, given any f ~ C(I,) and e > O, there is a sum, G(x), 
of the above form, for which 

IG(x) - f(x)l < e for all x ~1,. 

Proof. Let S c C(I,) be the set of functions of the form G(x) as in (2). Clearly S is 
a linear subspace of C(I,). We claim that the closure of S is all of C(I,). 

Asgume that the closure of S is not all of C(In). Then the closure of S, say R, is a 
closed proper subspace of C(ln). By the Hahn-Banach theorem, there is a bounded 
linear functional on C(I,), call it L, with the property that L # 0 but L(R) = L(S) = O. 

By the Riesz Representation Theorem, this bounded linear functional, L, is of the 
form 

L(h) = f h(x) d#(x) 
,11 n 

for some # e M(ln), for all h e C(I,). In particular, since a(yrx + O) is in R for all y 
and 0, we must have that 

f t a ( Y r X  + d#(x) = O) 0 
n 

for all y and 0. 
However, we assumed that a was discriminatory so that this condition implies 

that/z = 0 contradicting our assumption. Hence, the subspace S must be dense in 
c(1,). �9 

This demonstrates that sums of the form 

N 

are dense in C(I,) providing that a is continuous and discriminatory. The argument 
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used was quite general and can be applied in other cases as discussed in Section 4. 
Now, we specialize this result to show that any continuous sigmoidal a of the form 
discussed before, namely 

t r ( t ) ~ f l  as t - ,  +oo, 
t0 as  t ~ - -o0 ,  

is discriminatory. It is worth noting that, in neural network applications, continuous 
sigmoidal activation functions are typically taken to be monotonically increasing, 
but no monotonicity is required in our results. 

Lemma 1. Any bounded, measurable siomoidal function, a, is discriminatory. In 
particular, any continuous siomoidal function is discriminatory. 

Proof. To demonstrate this, note that for any x, y, 0, ~p we have 

(~ 1 for y r x + O > O  as 2--*+oo, 

a(2(yrx+O)+cp) 0 for y r x + O < O  as 2--* +oo, 

a(cp) for yrx + 0 = 0 for all 2. 

Thus, the functions aa(x ) = cr(2(yrx + O) + ~p) converge pointwise and boundedly 
to the function 

f 
= l  for yrx+O>O,  

y(x) = 0  for yrx+O<O,  
=a(cp) for yVx+O=O 

a s 2 ~  + ~ .  
Let FIy.o be the hyperplane defined by {xlyXx + 0 = 0} and let Hy.o be the open 

half-space defined by {x[yrx + 0 > 0}. Then by the Lesbegue Bounded Convergence 
Theorem, we have that 

= f ax(x) dlt(x) 0 
.11 n 

= [ r(x) d~(x) 
.11 n 

= a(~0) /~(n , ,0 )  + u(n~,o) 
for all ~o, 0, y. 

We now show that the measure of all half-planes being 0 implies that the measure 
/a itself must be 0. This would be trivial if/~ were a positive measure but here it is not. 

Fix y. For a bounded measurable functon, h, define the linear functional, F, 
according to 

t B  

F(h) = j_ h(yrx) dlt(x) 
.1I n 

and note that F is a bounded functional on L| since # is a finite signed measure. 
Let h be the indicator funcion of the interval [0, oo) (that is, h(u) = 1 if u > 0 and 
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h(u) = 0 if u < 0) so that 

F(h) = f h(yTx) d#(x) = #(I'ly,_s) +/~(Hy,_s) = 0. 
,11 n 

Similarly, F(h) = 0 if h is the indicator function of the open interval (0, 00). By 
linearity, F(h) = 0 for the indicator function of any interval and hence for any simple 
function (that is, sum of indicator functons of intervals). Since simple functons are 
dense in L~(R) (see p. 90 of [A]) F = 0. 

In particular, the bounded measurable functions s(u)= sin(m.u) and c(u)= 
cos(m" u) give 

F(s + ic) = f cos(mrx) + i sin(mrx)dlz(x) = f_ exp(imrx) dg(x) = 0 
.11 n J i m  

for all m. Thus, the Fourier transform of # is 0 and so # must be zero as well [R2, 
p. 176]. Hence, a is discriminatory. �9 

3. Application to Artificial Neural Networks 

In this section we apply the previous results to the case of most interest in neural 
network theory. A straightforward combination of Theorem I and Lemma 1 shows 
that networks with one internal layer and an arbitrary continuous sigmoidal func- 
tion can approximate continuous functions wtih arbitrary precision providing that 
no constraints are placed on the number of nodes or the size of the weights. This is 
Theorem 2 below. The consequences of that result for the approximation of decision 
functions for general decision regions is made afterwards. 

Theorem 2. Let tr be any continuous sigmoidal function. Then finite sums of the 
form 

N 

G(x) = Z + or) 
j=l 

are dense in C(I~). In other words, given any f E C(I~) and e > O, there is a sum, G(x), 
of the above form, for which 

IG(x )  - f ( x ) l  < e for all x ~ In. 

Proof. Combine Theorem 1 and Lemma 1, noting that continuous sigmoidals 
satisfy the conditions of that lemma. �9 

We now demonstrate the implications of these results in the context of decision 
regions. Let m denote Lesbeguc measure in I,. Let PI, P2 . . . . .  Pk be a partition of 
I, into k disjoint, measurable subsets of In. Define the decision function, f ,  according 
to 

f(x) = j if and only if x e Pj. 

This function f can be viewed as a decision function for classification: if f(x) = j, 
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then we k n o w  that  x ~ P~ and we can classify x accordingly. The  issue is whether  
such a decision function can be implemented  by a network with a single internal 
layer. 

We have ihe following fundamenta l  result. 

Theorem 3. Let a be a continuous sigmoidal function. Let f be the decision func- 
tion for any finite measurable partition of  In. For any e > O, there is a finite sum of the 
form 

N 

G(x) = Y, + 0 r) 
j=l  

and a set D ~ In, so that re(D) > 1 - ~ and 

IG(x) - f(x)l  < e for x ~ D. 

Proof. By Lusin 's  theorem [R1],  there is a cont inuous function, h, and a set D with 
re(D) > 1 - e so that  h(x) = f (x )  for x E D. N o w  h is cont inuous  and so, by Theo rem 
2, we can find a summat ion  of the form of G above to satisfy IG(x) - h(x)l < e for 
all x e I~. Then  for x E D, we have 

IG(x) - f(x)l = IG(x) - h(x)l < e. �9 

Because of continuity,  we are always in the posit ion of having to make  some 
incorrect decisions abou t  some points. This result states that  the total  measure  of 
the incorrectly classified points  can be made  arbitrari ly small. In  light of  this, 
Thoerem 2 appears  to be the strongest  possible result of  its kind. 

We can develop this app rox ima t ion  idea a bit more  by considering the decision 
problem for a single closed set D c I~. Then f (x)  = 1 if x E D and f (x)  = 0 otherwise; 
f is the indicator  function of the set D c I~. Suppose we wish to find a summat ion  
of the form (1) to app rox ima te  this decision function. Let 

A(x, D) = min{lx  - Yl, Y ~ D} 

so that  A(x, D) is a cont inuous  function of x. N o w  set 

~ (x )  = max 0, e 

so that  f~(x) = 0 for points  x far ther  than e away from D while f~(x) = 1 for x z D. 
Moreover ,  ~(x)  is cont inuous  in x. 

By Theo rem 2, find a G(x) as in (1) so that  IG(x) - ~(x)l  < �89 and use this G as an 
approx imate  decision function: G(x) < �89 guesses that  x E D c while G(x) >__ �89 guesses 
that  x r D. This decision procedure  is correct  for all x ~ D and for all x at a distance 
at least ~ away  f rom D. I f  x is within e distance of D, its classification depends on 
the part icular  choice of G(x). 

These observa t ions  say tha t  points  sufficiently far away  f rom and points  inside 
the closed decision region can be classified correctly. In  contrast ,  Theo rem 3 says 
that  there is a ne twork  that  makes  the measure  of points  incorrect ly classified as 
smat! as desired but  does not  guarantee  their  location. 
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4. Results for Other Activation Functions 

In this section we discuss other classes of activation functions that have approxima- 
tion properties similar to the ones enjoyed by continuous sigmoidals. Since these 
other examples are of somewhat less practical interest, we only sketch the corre- 
sponding proofs. 

There is considerable interest in discontinuous sigmoidal functions such as hard 
limiters (~(x) = 1 for x > 0 and a(x) = 0 for x < 0). Discontinuous sigmoidal func- 
tions are not used as often as continuous ones (because of the lack of good training 
algorithms) but they are of theoretical interest because of their close relationship to 
classical perceptrons and Gamba networks [MP]. 

Assume that tr is a bounded, measurable sigmoidal function. We have an analog 
of Theorem 2 that goes as follows: 

Theorem 4. Let tr be bounded measurable sigmoidal function. Then finite sums of  
the form 

Ig 

j=l 

are dense in LI(I.). In other words, given any f ~ LX(I~) and e > 0, there is a sum, 
G(x), of the above form for which 

JiG - filL, = { ]G(x) - f(x)[ dx < e. 

/ m  

d l  n 

The proof follows the proof of Theorems 1 and 2 with obvious changes such as 
replacing continuous functions by integrable functions and using the fact that L~(ln) 
is the dual .of L t (I,). The notion of being discriminatory accordingly changes to the 
following: for h E L~176 the condition that 

f a(yXx+ O)h(x)dx 0 
n 

for all y and 0 implies that h(x) = 0 almost everywhere. General sigmoidal functions 
are discriminatory in this sense as already seen in Lemma 1 because measures of 
the form h(x) dx belong to M(ln). 

Since convergence in L t implies convergence in measure [A], we have an analog 
of Theorem 3 that goes as follows: 

Theorem 5. Let u be a general sigmoidal function. Let f be the decision function 
for any finite measurable partition of In. For any 8 > O, there is a finite sum of  the 
form 

U 

j=t 

and a set D c In, so that re(D) >_ 1 - e and 

IG(x)  - f ( x ) l  < f o r  x D. 

A number of other possible activation functions can be shown to have approxima- 
tion properties similar to those in Theorem 1 by simple use oftbe Stone-Weierstrass 
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theorem I-A]. Those include the sine and cosine functions since linear combinations 
of sin(mr) and cos(mt) generate all finite trigonometric polynomials which are 
classically known to be complete in C(I.). Interestingly, the completeness of trigono- 
metric polynomials was implicitly used in Lemma 1 when the Fourier transform's 
one-to-one mapping property (on distributions) was used. Another classical example 
is that of exponential functions, exp(mt), and the proof again follows from direct 
application of the Stone-Weierstrass theorem. Exponential activation functions 
were studied by Palm in [P] where their completeness was shown. 

A whole other class of possible activation functions have completeness properties 
in LI(I.) as a result of the Wiener Tauberian theorem [R2]. For example, suppose 
that a is any L I(R) function with nonzero integral. Then summations of the form 
(1) are dense in Lt(R *) as the following outline shows. 

The analog of Theorem 1 carries through but we change C(I.) to LI(I.) and M(I.) 
to the corresponding dual space L~~ The analog of Theorem 3 holds if we can 
show that an integrable tr with nonzero integral is discriminatory in the sense that 

f l a ( y r x  + O)h(x) = (3) dx 0 
n 

for all y and 0 implies that h = 0. 
To do this we proceed as follows. As in Lemma 1, define the bounded linear 

functional, F, on LI(I~) by 
t ~  

F(g) = l g(yrx) h(x) dx. 
,11 t t  

(Note that the integral exists since it is over I. and h is bounded. Specifically, if 
g ~ LI(R), then g(yrx) ~ LI(I.) for any y.) 

Letting ge,~(t) = a(st + 0), we see that 

F(go,s) = f_ a((sy)rx + O)h(x) dx = 0 
d l  n 

so that F annihilates every translation and scaling of go, 1. Let f be the Fourier trans- 
form of f.  By standard Fourier transform arguments, #0,,(z) = exp(izO/s)#(z/s)/s. 
Because of the scaling by s, the only z for which the Fourier transforms of all the 
go,s can vanish is z = 0 but we are assuming that Saa(t) dt = ~o,1(0) ~ 0. By the 
Wiener Tauberian theorem [R2], the subspace generated by the functions go,, is 
dense in Lt(R). Since F(ge.~) = 0 we must have that F = 0. Again, this implies that 

F(exp(imt)) = I_ exp(imt)h(t) dt = 0 
.11 n 

for all m and so the Fourier transform ofh is 0. Thus h itself is 0. (Note that although 
the exponential function is not integrable over all of R, it is integrable over bounded 
regions and since h has support in I., that is sufficient.) 

The use of the Wiener Tauberian theorem leads to some other rather curious 
activation functions that have the completeness property in LI(I.). Consider the 
following activation function of n variables: tr(x) = 1 if x lies inside a finite fixed 
rectangle with sides parallel to the axes in R n and zero otherwise. Let U be an n x n 
orthogonal matrix and y E R n. Now a(Ux + y) is the indicator funciton of an 



312 G. Cybenko 

arbitrarily oriented rectangle. Notice that no scaling of the rectangle is allowed-- 
only rigid-body motions in Euclidean space! We then have that summations of the 
form 

N 
~ja(Ujx + y~) 

j=t  

are dense in LI(R"). This follows from direct application of the Wiener Tauberian 
theorem [R2] and the observation that the Fourier transform of a vanishes on a 
mesh in R" that does not include the origin. The intersection of all possible rotations 
of those meshes is empty and so a together with its rotations and translations 
generates a space dense in L I ( R n ) .  

This last result is closely related to the classical Pompeiu Problem [BST] and 
using the results of [BST-I we speculate that the rectangle in the above paragraph 
can be replaced by any convex set with a corner as defined in [BST]. 

5. Summary 

We have demonstrated that finite superpositions of a fixed, univariate function that 
is discriminatory can uniformly approximate any continuous function of n real 
variables with support in the unit hypercube. Continuous sigmoidal functions of 
the type commonly used in real-valued neural network theory are discriminatory. 

This combination of results demonstrates that any continuous function can be 
uniformly approximated by a continuous neural network having only one internal, 
hidden layer and with an arbitrary continuous sigmoidal nonlinearity (Theorem 2). 
Theorem 3 and the subsequent discussion show in a precise way that arbitrary 
decision functions can be arbitrarily well approximated by a neural network with 
one internal layer and a continuous sigmoidal nonlinearity. 

Table 1 summarizes the various contributions of which we are aware. 

Table 1 

Function type and 
transformations Function space References 

r + 0), a continuous C(I~) 
sigmoidal, y ~ R ~, 0 ~ R 

o(yTx + 0), cr monotonic C(l.) 
sigmoidal, y r R ~, 0 ~ R 

~(y~x + 0), o c(i.) 
sigmoidal, y ~ R ~, 0 e R 

a(yrx + 0), o ~ Lt(R) LI(I.) 

Scr(t) dt # O, y r  R', 0 r R 
r + 0), r continuous L2(I~) 

sigmoidal, y e R n, 0 r R 
~(Ux + y), U e R "x", Lt(I.) 

y r R', Gr indicator of a rectangle 
a(tx + y), t r R, Gr r LI(R ") Lt(R ") 

y e H", S a(x) dx # 0 

This paper 

IF'J, [HSWJ 

if] 

This paper 

[co] 

This paper 

Wiener Tauberian 
theorem [R2] 
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While the approximating properties we have described are quite powerful, we 
have focused only on existence. The important questions that remain to be answered 
deal with fe.asibility, namely how many terms in the summation (or equivalently, 
how many neural nodes) are required to yield an approximation of a given quality? 
What properties of the function being approximated play a role in determining the 
number of terms? At this point, we can only say that we suspect quite strongly that 
the overwhelming majority of approximation problems will require astronomical 
numbers of terms. This feeling is based on the curse of dimensionality that plagues 
multidimensional approximation theory and statistics. Some recent progress con- 
cerned with the relationship between a function being approximated and the number 
of terms needed for a suitable approximation can be found in [MS J] and [BH], 
[BEHW], and IV] for related problems. Given the conciseness of the results of this 
paper, we believe that these avenues of research deserve more attention. 

Acknowledgments. The author thanks Brad Dickinson, Christopher Chase, Lee 
Jones, Todd Quinto, Lee Rubel, John Makhoul, Alex Samarov, Richard Lippmann, 
and the anonymous referees for comments, additional references, and improvements 
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